冷却塔混凝土结构价格

冷却塔混凝土结构价格

冷却塔干湿球温度及水冷却理论极限

干、湿球温度θ和τ是冷却塔设计的主要气象参数,它们是反映空气温度的物理参数。冷却塔湿球温度计的原理及相对湿度1、湿球温度计原理测θ和τ的干、湿度温度计见图5-4。干球温度θ是用一般温度计测得的图5-4中的左边一支。而测湿球温度的温度计图5-4中的右边一支,它的水银球上包一层湿纱布纱布的下端浸入在充水的容器之中,使空气与水不直接接触,测得的温度称为湿球温度,用τ表示,该温度实际上是在当地当时的气温条件下,水冷却所能达到的最低温度。湿球温度计上的纱布在毛细管作用下,纱布表面吸收了一层水,在空气不饱和的情况下,这层表面的水不断蒸发,蒸发所需要的热量由水中取得,因而水温逐渐降低。这里存在着两种散热:一种是空气向水进行传导散热;另一种是水向空气进行蒸发散热,现分析在tfθ时的水向空气传热。空气向水的传导散热:设刚开始时,纱布上表面这层水的温度为tf,空气温度为θ,开始时因tfθ,水向空气传热,当tf下降后,在tf=θ时,Hα=0,当tf再下降,到θtf时存在着θ-tf的温度差,这个温度差是空气向水传导散热的推动力,这样,空气向纱布与空气的交界面传递热量,再通过纱布把空气的热量传给水。设水银球上盖的湿纱布面积为F,传热系数为α,则空气向湿纱布交界面传递的热量为:αθ-tfF,此值随tf的下降而增加。同时纱布交界面的水也在不断地向空气传递热量,进行蒸发散热,使水温T不断下降,当纱布层水温T降低到τ时tf=τ<θ,水层的温度不再下降了,这时:水的蒸发散热=空气传递给水的热量,处于动态平衡状态。这时候纱布水层上的温度τ称为湿球温度,这时空气向水层传递的热量达到最大值,即为αθ-τF。那么这时候水层向空气蒸发散热量是多少呢当纱布水层温度达到τ时tf=τ<θ,水层交界面达到饱和蒸气,其饱和蒸气分压力为P″τ,而空气温度为θ时的蒸气分压力为Pθ,P″τPθ,它们的蒸气分压力差为P″τ-Pθ,这个分压力差就是纱布水层继续向空气蒸发散热的推动力。就是说这时存在着空气向水进行传导散热的推动力是θ-τ的温度差;水向空气进行蒸发散热的推动力是P″τ-Pθ分压力差。空气向水进行传导散热量为αθ-τF,而这时的蒸发散热量是多少设水的汽化热为γkcalkg,γ=γ0+0、47,汽化热γ0=597、3kcalkg。设βp为压差蒸发散热系数,代表单位蒸气压力下,单位面积上水汽蒸发量kgm2·h·atm。那么水层温度降到τ时,纱布水层的蒸发散热量为:γβpP″τ-PθF,因为这时空气向水的传导散热=水层向空气的蒸发散热,处于动态平衡状态,则得:则可得空气中水蒸气的分压力Pθ为:通过实验得αγβp=0、000662P,代入式5-41得:这就是前面论述的式5-20的由来。2、精确测定湿球温度τ要注意的问题1必须保证水银球完全被湿纱布覆盖:2空气的速度风速必须要足够大,一般要求风速在3~5ms以上,这样周围环境传来的辐射热的影响可忽略不计,只存在空气传递来的热量对湿球温度τ的影响。3补充水的水温应与湿球温度τ相等。满足上述三条后,空气流速风速可以在较大范围内变化即不一定要在3~5ms之内,从而不影响湿球温度的测定值。在现场实际测定时,把阿斯曼通风干、湿球温度计放在搭好的棚内即要求通风而又不在太阳下,温度计应放在距地面210m处,又要距冷却塔有一定的距离,防止冷却塔出来的湿空气凝结水滴的影响,但也不要太远。测定读数间隔时间为10~20min一次。测点布置的数目,中小型冷却塔可布置2个以上测点:大型冷却塔要求布置4个以上测点,然后取各测点相加后的算术平均值。但一般玻璃钢冷却塔的测试往往都只布置一个测点。3、湿球温度对水蒸发散热冷却的意义。湿球温度τ对水蒸发冷却的意义主要有以下两条:1湿球温度τ代表当地当时的气温条件下,水可能被冷却的最低温度,即冷却塔出水温度t2的理论极限值即在理论上冷却塔的出水温度t2可达到τ的温度。当要求冷却后的水温t2越接近湿球温度时,冷却越困难,要使t2接近于τ,则冷却塔的尺寸和体积会增加很多,就会大幅度地增加造价而很不经济。一般冷却塔的出水温度t2等于或大于τ3~5℃即t2-τ≥3~5℃,t2-τ称为冷幅高,是衡量冷却塔冷却效果好与差的重要指标。上海地区设计的标准型低温塔冷却塔出水温度t2=32℃,设计采用的τ为28℃,则t2-τ=4℃。2先简述一下绝热饱和温度θB的概念。当空气温度θ不变时,湿空气焓i和相对湿度均随含湿量X的增加而增加,随X的含量减少而减少。当含湿量X增加到使湿空气达到饱和时,则湿空气就不再吸收水蒸气了,就是说拒绝吸收水中蒸发出来的散热量。这时空气中的水蒸气分压力从Pθ上升到P″θ,=1,X和i值都达到了最大值。这时的X和θ分别称为饱和含湿量和饱和湿度,而此时湿空气拒绝吸收水中蒸发的热量,故这时的饱和温度称为绝热饱和温度,用θB表示。湿球温度τ与湿空气的绝热饱和温度θB在物理概念上是完全不同的,但湿球温度的数值与空气的绝热饱和温度的值是相等的,即τ=θB,这一性质使得水的最低冷却温度与空气的绝热饱和温度相等。在空气含热量计算图中图5-3与=1相交的温度θB就等于湿球温度τ,因此,冷却过程的理论分析,可以根据湿空气的焓湿图来进行。冷却塔湿空气焓湿图的应用湿空气中的相对湿度、含湿量X、含热量i和温度tθ是4项重要的热力学参数,其计算工作量大而且繁琐,除试验或实测得到之外,为计算方便,把、X、i、t4项的相互关系绘制成图5-5,利用图5-5,可根据已知的两项热力学参数,就可直接查出另两项,简化了计算工作。如何应用图5-5,以图5-6来加以说明,按图5-6所示,已知温度tp和相对湿度=0、6,按tp点垂直向上与=0、6曲线交于P点,由P点水平向右移动得含湿量Xp;由P点与i线平行向左上角移动,得热焓ip。焓湿图是冷却塔热力计算的基本图表,从焓湿图分析可以得出下列关系。1、当温度t不变时,如图5-6中BtB线所示,热焓i和相对湿度均随含湿量X的增减而增减,当相对湿度=1的最大值时,则X与i在该温度下也均达到最大值,这时XB及tB分别称为饱和含湿量和饱和温度。2、当X为常数时,如图5-6中的BXB线所示,i随着t的增减而增减,而随着t的降低而增加即t增加减小,当t降到=1的时候,空气达到饱和,即达到露点。这时的t为最小值。这就是前面讲到的,在一定温度下,原来没有达到饱和的空气即Pq没有达到P″q,当温度下降到某一值时达到了饱和,使=1,Pq=P″q;反过来,在一定温度下已达到饱和的空气,当温度升高后就不饱和了,可继续接受水蒸气。3、当i为常数时,如图5-6中的BC线所示,这时湿空气的散热量与吸热量相等,热力学上称为绝对条件。这就是前面讨论的湿球温度τ的数值与空气的绝热饱和温度值相等,当空气按绝热过程降低温度时即沿BC线移动,它与饱和线=1相交的温度tB就等于湿球温度τ。从图中BC线可见:随X的增加而增加,而t随X的增加而降低,当X增加到XB时,=1,即X与均达到了最大值,而t降低到了最低值tB,即湿空气处于饱和状态,tB=τ,=1,X=XB。4、当相对湿度不变时,t、x、i都是同时增加或同时减小。

冷却塔调试与日常使用

1、在使用前对进出水管道、水池进行全面冲洗,清除塔内垃圾,以防管路堵塞。2、各部件连接螺栓,特别是传动部件风机,电机,旋转布水器,必须一一拧紧。3、检查齿轮减速器油位是否正常,皮带减速器的皮带运行约60H后,须重新检查皮带拉力,确保正常,并加注黄油一般每台50克左右,三个月检查加注一次。4、风叶转动灵活,无磕碰上壳体。当风机工作时,从塔顶往下看应为顺时针,向上抽风。5、冷却塔如有异常声音应立即停机,全面检查,直至排除故障。6、风机工作后,打开水阀,同时水泵流量、进塔水压、电流、电压、振动、噪音值均应在规定范围内,并做好有关冷却塔的进出水温度,流量,气象参数的记录。7、发现布水器不转或布水不均匀时,应停机检修。8、循环水应为自来水或清洁水,不宜含油污和杂质,浑浊度不大于50mm1。9、冷却塔作为重要的冷却设备,应有专人负责管理,北方天气较冷要考虑结冰影响。

相关文章

冷却塔混凝土结构
冷却塔混凝土结构

冷却塔湿空气热力学参数冷却塔湿空气压力这里指的压力是指通常情况下的空气压力,即大气压力Pa。对于冷却塔的冷却水来说,进塔空气和出塔空气都是湿空气,不同的是进塔空气中的水蒸气含量很小,出塔空气因在塔内接

冷却塔混凝土
冷却塔混凝土

河道与河湾冷却河道冷却1、利用河道冷却循环时,应根据工程的具体条件,用物理模型试验或数学模型计算,确定河段水面的冷却能力、取水温度和河段水温分布,并结合技术经济比较确定取水与热水排水工程的最优设计布置

冷却塔混流式
冷却塔混流式

水面冷却构筑物分类及其组织冷却构筑物分类在循环冷却水系统中,降低水温的设备或构筑物称为冷却设备或冷却构筑物,也可称为循环水冷却设施。按水冷却方法,分为自然冷却法和机械冷却法;按循环水是否与空气直接接触

冷却塔火工作原理
冷却塔火工作原理

冷却塔循环冷却水处理任务及方法循环过程中的水质变化水在循环使用和冷却过程中,会不断地产生问题,引起循环水水质的变化,主要有以下方面。1、CO2含量的降低循环水在循环过程中和在冷却塔中与空气接触,水中游

冷却塔火力发电
冷却塔火力发电

冷却塔热力计算法冷却塔的热力计算可按蒸发理论公式、经验公式、计算图表等进行。冷却塔热力计算理论公式计算法理论公式计算法是以蒸发散热的冷却理论为基础,根据传热和传质的关系及冷却过程中热量与含湿量的平衡而

冷却塔机房
冷却塔机房

淋水填料冷却塔点滴式淋水填料点滴式淋水填料主要依靠水在溅落过程中形成的小水滴进行散热。在板条中,大水滴自上至下地不断掉到下层板条上被溅散成许多细小水滴而进行水面散热,得到冷却。在三角形板条作为淋水填料